फार्मर फर्स्ट परियोजना के अंतर्गत प्रौद्योगिकी हस्तक्षेप का धान-गेहूँ-मूँग/उड़द फर्सल प्रणाली की उत्पादकता एवं लाभप्रदता पर प्रभाव

Impact of technological intervention under Farmer FIRST Programme on productivity and profitability of rice-wheat-greengram/blackgram cropping system

ICAR-Directorate of Weed Research Jabalpur- 482004 (M.P.)

Indian Council of Agricultural Research New Delhi

ICAR-Directorate of Weed Research Jabalpur, Madhya Pradesh - 482004

Compiled by

Pijush Kanti Mukherjee, R.P. Dubey, Monika Raghuwanshi, V.K. Choudhary, C.R. Chethan, Yogita Gharde, Dibakar Ghosh, P.K. Singh, Shobha Sondhia, Deepak Vishwanath Pawar, Dasari Sreekanth, Jamaludheen A. and Jitendra Kumar Dubey *Corresponding author email: pkm_agronomy@yahoo.co.in

Design and Layout Sandeep Dhagat and Daud Raza Khan

Preface

भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय, जबलपुर द्वारा "जबलपुर जिले में फसल उत्पादकता एवं आजीविका सुरक्षा में वृद्धि हेतु उन्नत प्रौद्योगिकी हस्तक्षेप" फार्मर फर्स्ट परियोजना (एफएफपी) का क्रियान्वयन वर्ष 2017-18 से 2023-24 तक किया गया। यह परियोजना जबलपुर जिले के पनागर विकासखंड के दो समीपवर्ती गाँवों (उमरिया चौबे और बरौदा) में संचालित की गईं। परियोजना के मुख्य उद्देश्य फसल उत्पादकता में वृद्धि, लाभप्रदता में सुधार, संसाधनों के सतत उपयोग को बढ़ावा देना तथा आवश्यकता-आधारित प्रौद्योगिकी हस्तक्षेपों के माध्यम से कृषक परिवारों की आजीविका सुरक्षा को सुदृढ़ करना था।

दोनों गाँवों में अधिकांश किसान छोटे और सीमान्त वर्ग के थे, जहाँ प्रमुख फसलें धान, गेहूँ, मसूर और चना थीं। लगभग 90 प्रतिशत क्षेत्र सिंचित तथा लगभग 79 प्रतिशत भूमि पर द्वि-फसली प्रणाली अपनाई जाती थी।तथापि, खरपतवार फसल उत्पादन की एक गंभीर समस्या थे और फसल अवशेषों को जलाना एक सामान्य प्रथा थी। परियोजना के आरंभ होने से पहले, ग्रीष्म (पूर्व-खरीफ) ऋतु में अधिकांश भूमि परती छोड़ दी जाती थी तथा किसान मुख्यतः पारंपरिक कृषि पद्धतियों पर निर्भर थे।

परियोजना के क्रियान्वयन के दौरान फसल उत्पादन, प्राकृतिक संसाधन प्रबंधन, उद्यानिकी, पशुधन एवं उद्यम-आधारित मॉड्यूलों में विभिन्न हस्तक्षेप किए गए। उन्नत किस्मों का चुनाव, कुशल खरपतवार प्रबंधन तकनीकें, घर की बाड़ी में सब्ज़ी उत्पादन, अवशेषों का उपयोग, क्षमता विकास कार्यक्रम एवं कृषक-वैज्ञानिक संवाद जैसी गतिविधियों से फसल प्रदर्शन, संसाधन उपयोग दक्षता तथा किसानों की आजीविका में उल्लेखनीय सुधार हुआ। इन प्रयासों से उपज में पर्याप्त वृद्धि दर्ज की गई, धान की उत्पादकता में 11-19.3 प्रतिशत, गेहूँ में 19 प्रतिशत तथा ग्रीष्मकालीन दलहनों में 14-42 प्रतिशत तक की बढ़ोतरी हुई। बरौदा गावं में फसल प्रणाली उत्पादकता (धान समतुल्य उपज) किसानों की पद्धति (8.68-13.00 टन/हे.) की तुलना में प्रोघोणिकी हस्तक्षेप के अंतर्गत 11.99-17.04 टन/हे. तथा उमरिया चौबे गावं में किसानों की पद्धति (8.71-13.47 टन/हे.) की तुलना में प्रोघोणिकी हस्तक्षेप के उत्पाद वर्गहें। की तुलना में प्रोघोणिकी हस्तक्षेप के उत्पाद वर्गहें।

आर्थिक दृष्टि से भी परियोजना ने प्रभावशाली परिणाम दिए। फसल प्रणाली से औसत शुद्ध आय किसानों की पद्धति (लगभग ₹1.05-1.07 लाख/हे.) की तुलना में प्रोद्योगिकी हस्तक्षेप के अंतर्गत लगभग ₹1.80 लाख/हे. तक बढ़ी, जबिक लाभ-लागत अनुपात लगभग 2.0 से बढ़कर 3.0 तक बढ़ गया । ग्रीष्मकालीन परती भूमि का पुनरुद्धार दोनों गाँवों में लगभग 9 8 प्रतिशत तक सफलतापूर्वक किया गया । इस प्रकार, परियोजना ने सतत कृषि पद्धतियों के संवर्द्धन एवं ग्रामीण समुदायों के लिए बेहतर आय अवसर उपलब्ध कराने में महत्वपूर्णयोगदान दिया।

भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय, जबलपुर के निदेशक ने प्रमुख अन्वेषक, सह-अन्वेषक एवं फार्मर फर्स्ट परियोजना दल के सभी सदस्यों के सतत प्रयासों और योगदानों की सराहना की, जिनके प्रयासों से अपेक्षित उपलब्धियाँ हासिल की जा सकीं और जमीनी स्तर पर सार्थक प्रभाव डाला जा सका।

स्थान:जबलपुर दिनांक:16-10-2025 ं. (जे.एस.मिश्र) निदेशक The Farmer FIRST Programme (FFP) entitled "Enhancing crop productivity and livelihood security through improved technological interventions in Jabalpur district of Madhya Pradesh" was implemented by ICAR-Directorate of Weed Research, Jabalpur during 2017-18 to 2023-24 in two villages of Panagar block, Jabalpur district, with the main objectives of enhancing crop productivity, improving profitability, promoting sustainable use of resources, and strengthening livelihood security of farming households through need-based technological interventions.

Both villages were dominated by small and marginal farmers, with major crops including rice, wheat, lentil, and chickpea. About 90% of the cultivated area was irrigated, and nearly 79% of the land followed a double-cropping system. However, weeds posed a serious constraint to crop production, and burning of crop residues was a common practice. Before the inception of the project, lands were largely left fallow during the summer (*Pre-kharif*) season, and farmers primarily depended on traditional agricultural practices.

During the course of implementation, interventions were introduced in crop production, natural resource management, horticulture, livestock, and enterprise-based modules. The adoption of improved varieties, efficient weed management practices, backyard vegetable cultivation, residue utilization, capacity building programmes, and farmer-scientist interactions brought visible improvements in crop performance, resource use efficiency, and overall livelihood of the farmers. These efforts resulted in substantial yield gains, with rice productivity increasing by 11-19.3%, wheat by 19%, and summer pulses by 14-42% over farmers' practice. Cropping system productivity, in terms of rice equivalent yield improved from 8.68-13.00 t/ha (farmers' practice) to 11.99-17.04 t/ha (under intervention) in Barauda, and from 8.71-13.47 t/ha (farmers' practice) to 11.77-16.85 t/ha (under intervention) in Umariya Choubey villages.

Economically, the interventions delivered impressive results. Average net returns of the cropping system increased from about ₹1.05-1.07 lakh/ha under farmers' practice to nearly ₹1.80 lakh/ha under intervention in both the villages, with benefit-cost ratios improving from ~2.0 to ~3.0. Summer fallow lands were successfully revived up to 98% in both the villages. The project thus made a significant contribution to the promotion of sustainable farming practices and better income opportunities for rural communities.

The Director, ICAR-DWR, Jabalpur placed on record appreciation for the sincere efforts and contributions of the Principal Investigator, Co-PIs and all members of the Farmer FIRST Project team in achieving the desired outcomes and delivering meaningful impact at the grassroots level.

Place: Jabalpur Data: 16-10-2025 (J.S. Mishra) Director

फार्मर फर्स्ट परियोजना के अंतर्गत प्रौद्योगिकी हस्तक्षेप का धान-गेहूँ-मूँग/उड़द फर्सल प्रणाली की उत्पादकता एवं लाभप्रदता पर प्रभाव

कृषि, भारत की आजीविका सुरक्षा का प्रमुख आधार है, जिस पर विशेषकर ग्रामीण क्षेत्रों में आधी से अधिक जनसंख्या प्रत्यक्ष या अप्रत्यक्ष रूप से निर्भट रहती है। मध्य प्रदेश में लगभग 15.2 मिलियन हेक्टेयर क्षेत्र में खेती की जाती है, फिर भी संसाधनों की कमी, सीमित तकनीकी ज्ञान और कमजोर खरपतवार प्रबंधन के कारण इसका एक बड़ा हिस्सा वर्तमान अथवा अन्य परती भूमि के रूप में उपयोग नहीं हो रहा है, जबिक केवल खरपतवार प्रबंधन की कमी से ही लगभग 37% तक उपज हानि हो सकती है। इन चुनौतियों के समाधान के लिए फार्मर फर्स्ट परियोजना (एफएफपी), 1 फरवरी 2017 को पनागर ब्लॉक के बरौदा और उमरिया चौबे गाँवों में प्रारंभ की गई, जिसके अंतर्गत मूंग, धान और गेहूं फसलों में समेकित फसल प्रबंधन के विभिन्न प्रोधोगिकी हस्तक्षेप लागू किए गए।

दोनों गाँवों में अधिकांश किसान छोटे और सीमान्त वर्ग के थे, जहाँ प्रमुख फसलें धान, गेहूँ, मसूर और चना थीं। लगभग 90 प्रतिशत क्षेत्र सिंचित था तथा लगभग 79 प्रतिशत भूमि पर द्वि-फसली प्रणाली अपनाई जाती थी। तथापि, खरपतवार फसल उत्पादन की एक गंभीर समस्या थे और फसल अवशेषों को जलाना एक सामान्य प्रथा थी। परियोजना के आरंभ से पूर्व, ग्रीष्म (पूर्व-खरीफ) ऋतु में अधिकांश भूमि परती छोड़ दी जाती थी तथा किसान मुख्यतः पारंपरिक कृषि पद्धतियों पर निर्भर थे।

कार्यक्रम के तहत गेहूं में उच्च उत्पादकता वाली किस्मों द्वारा बीज प्रतिस्थापन, उच्च क्षमता वाले खरपतवारनाशी जैसी महत्वपूर्ण आवश्यक सामग्री उपलब्ध कराई गई, ताकि खरपतवार प्रकोप और पारंपिरक पद्धतियों से उत्पन्न सीमाओं के कारण स्थिर हुई उपज में सुधार हो सके। धान में, लंबे समय तक पकने वाली पारंपिरक किस्मों जैसे 'क्रांति' को बदलने के लिए हाइब्रिड धान की खेती और बेहतर खरपतवार नियंत्रण पर ध्यान केंद्रित किया गया, जिससे गेहूं की समय पर बुवाई संभव हो सके और फसल प्रणाली की समग्र उत्पादकता बढ़े। गेहूं कटाई के बाद खाली पड़ी भूमि को उपयोगी बनाने के लिए मूंग की खेती को बढ़ावा देने के लिए किसानों को तकनीकी मार्गदर्शन और समय पर आवश्यक सामग्री प्रदान की गई। यह लेख फार्मर फर्स्ट परियोजना के तहत अपनाए गए गाँवों में फसल प्रणाली की उत्पादकता और कृषि अर्थशास्त्र पर किए गए तकनीकी हस्तक्षेपों के समग्र प्रभाव का विवरण प्रस्तुत करता है।

1. मूँग (2017-18 से 2023-2024)

फार्मर फर्स्ट परियोजना अपनाए जाने से पहले, इन गाँवों के किसान मुख्यतः पारंपरिक कृषि पर निर्भर थे, जिससे कम उपज और संसाधनों की हानि होती थी। कार्यक्रम की शुरुआत के बाद गाँवों का मूल्यांकन किया गया, जिससे गेहूँ की कटाई के बाद कम उपयोग वाली भूमि के पुनरुद्धार के लिए रणनीतियाँ विकसित की गईं। मूंग और उड़द की खेती के एकीकृत प्रबंधन की आधुनिक तकनीकों पर किसानों के प्रबंधकीय कौशल को सुधारना इस कार्यक्रम की मुख्य

Agriculture remains the backbone of India's livelihood security, with over half of the population directly or indirectly dependent on it, particularly in rural areas. In Madhya Pradesh, around 15.2 million hectares are under cultivation, yet a significant portion remains underutilized as current or other fallow lands due to resource constraints, limited technical know-how, and poor weed management, which alone can cause up to 37% yield loss. To overcome these challenges, the Farmer FIRST Programme (FFP) was launched on 1st February 2017 in Barauda and Umariya Choubey villages of Panagar block, Jabalpur district, introducing integrated crop management interventions in greengram, rice and wheat.

Both villages were dominated by small and marginal farmers, with major crops including rice, wheat, lentil, and chickpea. About 90% of the cultivated area was irrigated, and nearly 79% of the land followed a double-cropping system. However, weeds posed a serious constraint to crop production, and burning of crop residues was a common practice. Before the inception of the project, lands were largely left fallow during the summer (*Pre-kharif*) season. Farmers were primarily dependent on traditional agricultural practices.

The programme promoted high-yielding varieties, seed replacement, high potency broadspectrum herbicides, and critical inputs for wheat to overcome stagnated yields caused by heavy weed infestation and outdated practices. For rice, the focus was on hybrid cultivation with improved weed control to replace long-duration traditional varieties like 'Kranti,' which delayed wheat sowing and reduced system productivity. In greengram, the initiative aimed to revive underutilized lands after wheat harvest by providing technical guidance and timely inputs to farmers. This article presents the combined impact of these interventions on cropping system productivity and farm economics in the adopted villages.

1. Greengram (2017-18 to 2023-24)

Before adoption of Farmer FIRST Programme, farmers in these villages were mainly dependent on traditional agriculture and that resulted in low yields and loss of resources. Appraisal of these adopted villages after inception of Farmer FIRST Programme led to develop the strategies for revival of underutilised lands after wheat harvest. Improving managerial skill of the farmers on modern technologies of integrated management of greengram and blackgram cultivation was the important activity to justify the rationality of

गतिविधि थी। किसानों को खरपतवार प्रबंधन की उन्नत तकनीकों पर व्यावहारिक प्रशिक्षण दिया गया, जिसे जबलप्र स्थित भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय द्वारा विकसित किया गया था। प्रशिक्षण, किसान-वैज्ञानिक संवाद और अन्संधान प्रक्षेत्र के निरंतर दौरे ने किसानों को उन्नत खरपतवार प्रबंधन, उच्च उत्पादकता वाली रोग प्रतिरोधक कम अवधि की किस्मों, जैव उर्वरक उपयोग, और संरक्षण जुताई के माध्यम से फसल उगाने के बारे में जानकारी दी। मूंग की सम्राट और विराट जैसी किस्मों तथा उड़द की पीयू-३१ और पीयू-१ जैसी किस्मों, राइजोबियम जैव उर्वरक, और इमेजेथापायर शाकनाशी आधारित व्यापक खरपतवार प्रबंधन जैसी महत्वपूर्ण सामग्री के माध्यम से गर्मियों में परती भूमि के पुनरुद्धार को बढ़ावा मिला। इसके परिणामस्वरूप, उमरिया चौबे में गर्मियों में परती भूमि का उपयोग 2.1% से बढ़कर 50% और बरौदा में ५.६% से बढ़कर ६०% हो गया। भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय की फार्मर फर्स्ट परियोजना की टीम द्वारा प्रदान किए गए लॉजिस्टिक समर्थन और किसानों द्वारा मूंग व उडद की खेती के एकीकृत प्रबंधन तकनीकों को निरंतर अपनाने के कारण, पिछले सात वर्षों में उमरिया चौबे में गर्मियों की परती भूमि का प्नरुद्धार ९८% और बरौदा में ९७% तक सफलतापूर्वक हो गया है। (चित्र 1.1 एवं 1.2)

उपज एवं आर्थिक विश्लेषण:

एकीकृत फसल प्रबंधन तकनीकों को अपनाने से, जैसे कि उच्च उत्पादकता वाली कम अविध की रोग प्रतिरोधक किस्मों की खेती, राइजोबियम जैव उर्वरक का उपयोग, उचित मात्रा में उर्वरक का सही तरीके से उपयोग और उन्नत खरपतवार प्रबंधन प्रथाएँ, किसानों की परंपरागत विधियों की तुलना में मूंग और उड़द की उपज में 1.75 क्विंटल/हेक्टेयर (14%) से 3.12 क्विंटल/हेक्टेयर (42%) तक की वृद्धि हुई। आर्थिक विश्लेषण से पता चला कि उमरिया चौबे गाँव में किसानों की परंपरागत विधियों की तुलना में प्रति हेक्टेयर ₹4348 (33%) से ₹26651 (94%) तक का अतिरिक्त लाभ प्राप्त हुआ (तालिका1.1)।

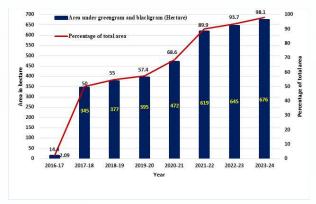


Figure 1.1: Area under summer greengram and blackgram in Umariya Choubey village

intervention. Hands-on trainings were provided to the farmers to gain knowledge and skill on technical knowhow of improved weed management practices developed by ICAR-DWR, Jabalpur. Conducting trainings, farmer-scientist interface meetings and continuous exposure of the farmers to the research farms of ICAR-DWR enhanced the knowledge of the farmers about improved weed management practices, growing of high yielding disease resistant short duration varieties, use of biofertilizer and growing of crops through conservation tillage. Introduction of short duration high yielding disease resistant varieties like Samrat and Virat of greengram and PU-31 and PU-1 of blackgram, Rhizobium biofertilizer with broad-spectrum weed management through imazethapyr as critical inputs has given a boost to the revival of summer fallow lands from 2.1% to 50% in Umariya Choubey and 5.6% to 60% in Barauda. Continuous adoption of the integrated management technologies of greengram and blackgram cultivation by the farmers and logistic support provided by the team of Farmer FIRST Programme of ICAR-DWR led to the dynamic revival of summer fallow lands up to 98% in Umariya Choubey and 97% in Barauda during last seven years under the project (Figure 1.1 and 1.2).

Yield and economics:

Continuous adoption of integrated crop management technologies in terms of growing high yielding short duration disease resistant varieties, use of *Rhizobium* biofertilizer, use of appropriate fertilizer with its proper doses and improved weed management practices resulted in additional seed yield of 1.75 q/ha (14%) to 3.12 q/ha (42%) over Farmers' Practice. Economic analysis revealed that additional profit of Rs. 4348/ha (33%) to Rs. 26651/ha (94%) was obtained over Farmers' Practice in Umariya Choubey village (**Table 1.1**).

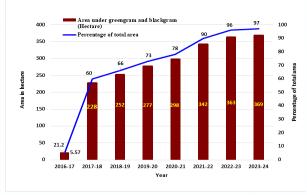


Figure 1.2: Area under summer greengram and blackgram in Barauda village

Table 1.1: Seed yield and economics of summer pulses (Greengram and blackgram) cultivation in Umariya Choubey village

Year	Seed y	ield (q/ha)	Net retu	rns (Rs./ha)	BC	ratio
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention
2017-18	12.5	14.3	13022	17370	2.00	2.80
2018-19	6.9	9.6	11574	16106	1.12	1.40
2019-20	8.2	9.9	19700	36575	1.78	3.05
2020-21			COV	ID period		
2021-22	11.6	14.9	48815	70273	2.37	2.84
2022-23	8.0	11.1	26387	47660	1.74	2.25
2023-24	7.5	10.6	28353	55004	1.80	2.54

इसी प्रकार, बरौदा गाँव में 2.4 क्विंटल/हेक्टेयर (21%) से 3.13 क्विंटल/हेक्टेयर (42%) तक की अतिरिक्त बीज उपज और प्रति हेक्टेयर 2897 रूपये (21%) से 26736 रूपये (95%) तक का अतिरिक्त लाभ दर्ज किया गया (**तालिका 1.2**)। Similarly in Barauda village, additional seed yield of 2.4 q/ha (21%) to 3.13 q/ha (42%) and additional profit of Rs. 2897/ha (21%) to Rs. 26736/ha (95%) were recorded over Farmers' Practice (**Table 1.2**).

Table 1.2: Seed yield and economics of summer pulses (Greengram and blackgram) cultivation in Barauda village

Year	Seed yield (q/ha)		Net retu	rns (Rs./ha)	BC ratio	
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention
2017-18	11.3	13.7	13578	16475	1.50	2.71
2018-19	6.8	9.4	11421	15835	1.11	1.40
2019-20	8.6	10.4	21900	39325	1.86	3.20
2020-21			COV	ID Period		
2021-22	11.2	14.6	45905	68090	2.29	2.79
2022-23	7.9	11.1	25612	47893	1.72	2.26
2023-24	7.4	10.6	28011	54747	1.79	2.54

फार्मर फर्स्ट परियोजना, १ फरवरी २०१७ को उमरिया चौबे और बरौदा गाँवों में शुरू किया गया। ग्रामीण भागीदारी मूल्यांकन गतिविधियों के दौरान गेहूँ की कटाई के बाद परती भूमि और अन्य उपयोग न की जाने वाली भूमि की पहचान की गई। परियोजना शुरू होने से पहले, गर्मियों के मौसम में उमरिया चौबे और बरौदा में क्रमशः केवल २.१% और ५.६% खेती योग्य भूमि पर मूंग और उड़द की खेती की जाती थी। इन गाँवों के किसान मुख्य रूप से पारंपरिक कृषि पर निर्भर थे, जिससे कम उपज और संसाधनों की हानि होती थी। प्रशिक्षण कार्यक्रमों, किसान-वैज्ञानिक संवाद बैठकों और

The Farmer FIRST Programme was initiated on 1st February 2017 in Barauda and Umariya Choubey villages. Participatory rural appraisal activities identified large fallow lands other than current fallow after wheat harvest in both the villages. Before inception of the project, only 2.1% and 5.6% of the total cultivable lands were used for greengram and blackgram cultivation during summer season in Umariya Choubey and Barauda, respectively. Farmers in these villages were dependent on traditional agriculture that resulted in low yields and loss of resources. Intervention in terms of conducting trainings,

भा.कृ.अन्.प.-खरपतवार अन्संधान निदेशालय के निरंतर दौरे ने मूंग और उड़द की खेती के एकीकृत प्रबंधन पर किसानों के ज्ञान को बढ़ाया। मूंग की सम्राट और विराट तथा उड़द की पीयू-३१ और पीयू-१ जैसी कम अवधि की उच्च उत्पादकता वाली रोग प्रतिरोधक किस्मों, राइजोबियम जैव उर्वरक, और इमेजेथापायर शाकनाशी आधारित व्यापक खरपतवार प्रबंधन जैसे महत्वपूर्ण इनपुर्स ने गेहूँ की कटाई के बाद परती भूमि के उपयोग को फसल विविधीकरण की ओर मोड़ने में बड़ा प्रभाव डाला। मूंग और उड़द की खेती की एकीकृत प्रबंधन तकनीकों के निरंतर अनुपालन और फार्मर फर्स्ट परियोजना की टीम द्वारा प्रदान किए गए लॉजिस्टिक समर्थन ने उमरिया चौबे में गर्मियों की परती भूमि के 98% और बरौदा में 97% तक सफल प्नरुद्धार में मदद की। पिछले सात वर्षों में किसानों को परंपरागत तरीकों की तुलना में औसतन ३०-३२% अधिक बीज उपज और 62-63% अधिक लाभ प्राप्त हुआ। कार्यक्रम के नए स्थान पर स्थानांतरित होने के बाद भी, उमरिया चौबे और बरौदा के किसान गेहँ की कटाई के बाद गर्मियों के मौसम में मूंग और उडद की खेती को निरंतर रूप से जारी रख रहे हैं।

2. धान (२०१७-१८ से २०२३-२४)

फार्मर फर्स्ट परियोजना को अपनाने से पहले पनागर ब्लॉक के बरौदा एवं उमरिया चौबे गांवों के किसान परंपरागत दीर्घ अवधि वाली धान की किस्म 'क्रांति' पर निर्भर थे, जिससे उन्हें कम उपज और संसाधनों का अप्रभावी उपयोग जैसी समस्याओं का सामना करना पड़ता था। फार्मर फर्स्ट परियोजना की शुरुआत के बाद गांवों में किए गए आधारभूत सर्वेक्षण के आधार पर संकर धान की किस्में 'अराइज़ गोल्ड ६४४४' और 'गंगा हाइब्रिड' को किसानों के लिए उपलब्द कराया गया, जिससे धान की उत्पादकता में उल्लेखनीय सुधार देखने को मिला।

इस हस्तक्षेप का एक मुख्य उद्देश्य किसानों के प्रबंधन कौशल को आध्निक समेकित खरपतवार प्रबंधन तकनीकों विशेषकर संकर धान की खेती के लिए सुदृढ़ बनाना था। किसानों को भा.कृ.अनु.प. - खरपतवार अनुसंधान निदेशालय, जबलपुर द्वारा विकसित उन्नत खरपतवार प्रबंधन रणनीतियों की तकनीकी जानकारी और व्यावहारिक कौशल प्रदान करने के लिए व्यवहारिक प्रशिक्षण सत्र आयोजित किए गए। नियमित प्रशिक्षण कार्यक्रम, किसान-वैज्ञानिक परिचर्चा बैठकें, और खरपतवार अनुसंधान निदेशालय के अनुसंधान फार्मों पर किसानों का भ्रमण के दौरान किसानों को उन्नत खरपतवार नियंत्रण तकनीकों, शाकनाशी छिडकाव विधियों, बीज उपचार के उपयोग, और उच्च उपज वाली धान की किस्मों की खेती की जानकारी देते हुए प्रशिक्षित किया गया। 'अराइज़ गोल्ड ६४४४' और 'गंगा हाइब्रिड' जैसी उच्च उत्पादकता वाली संकर धान की किस्मों के साथ-साथ नई पीढी के, कम मात्रा में प्रभावी ब्रॉड-स्पेक्ट्रम रेडीमिक्स शाकनाशी जैसे सायहेलोफॉप -ब्यूटाइल 5.1% w/w+ पेनॉक्ससुलाम 1.02% w/w ओडी तथा द्रायाफेमोन २०% w/w + एथॉक्सीसल्फ्यूरॉन १०% w/w डब्लूजी

farmer-scientist interface meetings and continuous exposure of the farmers to the research farms of ICAR-DWR enhanced the knowledge of the farmers on integrated management of greengram and blackgram cultivation. Introduction of short duration high yielding disease resistant varieties like Samrat and Virat of greengram and PU-31 and PU-1 of blackgram, Rhizobium biofertilizer with broad-spectrum weed management through imazethapyr as critical inputs made large impact on crop diversification in fallow lands after wheat harvest. Continuous adoption of the integrated management technologies of greengram and blackgram cultivation by the farmers and logistic support provided by the team of Farmer FIRST Programme of ICAR-DWR led to the dynamic revival of summer fallow lands up to 98% in Umariya Choubey and 97% in Barauda with average additional seed yield of 30 to 32% and average additional profit of 62 to 63% over Farmers' Practice during last seven years under Farmer FIRST Programme. After shifting the project to the new location, the farmers of Umariya Choubey and Barauda are continuously growing greengram and blackgram during summer season after wheat harvest.

2. Rice (2017-18 to 2023-24)

Before the adoption of the Farmer FIRST Programme (FFP), farmers in these villages primarily depended on the traditional long-duration rice variety 'Kranti', which resulted in low yields and inefficient use of resources. The baseline appraisal of the adopted villages after the inception of FFP led to the introduction of hybrid rice varieties 'Arize Gold 6444' and 'Ganga Hybrid', which significantly improved rice productivity.

One of the key components of the intervention was enhancing the managerial skills of the farmers in modern integrated weed management practices, particularly for hybrid rice cultivation. Hands-on training sessions were organized to equip farmers with technical know-how and practical skills on advanced weed management strategies developed by ICAR-Directorate of Weed Research (ICAR-DWR), Jabalpur. Regular trainings, farmer-scientist interface meetings, and exposure visits to ICAR-DWR research farms enriched farmers' understanding of improved weed control techniques, spraying methodology, use of seed treatments, and cultivation of high-yielding rice varieties. The introduction of high-yielding hybrid rice varieties like 'Arize Gold 6444' and 'Ganga Hybrid', along with broad-spectrum weed management using newgeneration, high potency, low dose ready-mix herbicides like cyhalofop-butyl 5.1% w/w + penoxsulam 1.02% w/w OD and triafamone 20% w/w + ethoxysulfuron 10% w/w WG in rotation to minimise

को वैकल्पिक रूप से (रोटेशन) प्रयोग कर खरपतवार वनस्पति के बदलाव की समस्या को न्यूनतम करने हेतु अपनाया गया। संकर धान की निरंतर खेती और उन्नत खरपतवार प्रबंधन तकनीकों के समन्वित उपयोग से, फार्मर फर्स्ट परियोजना के अंतर्गत किए गए हस्तक्षेपों के परिणामस्वरूप पिछले सात वर्षों में धान की उपज में 33-34% की वृद्धि और शुद्ध लाभ में 62-65% की वृद्धि दर्ज की गई। 2018 से शुरू किए गए प्रमुख हस्तक्षेप निम्नलिखित हैं:

- संकर धान किस्में: 'अराइज़ गोल्ड ६४४४" और 'गंगा हाइब्रिड" जैसी उच्च उत्पादकता वाली किस्मों को उन्नत सिंचित ऊपरी क्षेत्रों के लिए उपयुक्त मानते हुए प्रोत्साहित किया गया।
- खरपतवार प्रबंधन: नई पीढ़ी के उच्च प्रभावशाली, कम मात्रा में प्रयोग किये जाने वाले ब्रॉड-स्पेक्ट्रम रेडीमिक्स शाकनाशी जैसे सायहहेलोफॉप-ब्यूटाइल 5.1% + पेनॉक्ससुलाम 1.02% ओडी और ट्रायाफेमोन 20% + एथॉक्सीसल्फ्यूरॉन 10% डब्लूजी को खरपतवार वनस्पति में बदलाव की समस्या को रोकने हेतु रोटेशन में प्रयोग करने की सिफारिश की गई।
- क्षमता विकास गतिविधिया: संकर धान की खेती, शाकनाशियों और उनके छिड़काव तकनीकों, तथा बेहतर कृषि पद्धतियों पर आधारित व्यवहारिक प्रशिक्षण, क्षेत्रीय प्रदर्शन और किसान-वैज्ञानिक परिचर्चा बैठकें आयोजित की गईं।
- कृषि आदान सहायता: संकर धान के उच्च गुणवत्ता वाले बीज एवं शाकनाशी किसानों को आवश्यक कृषि आदान के रूप में प्रदान किए गए ताकि तकनीकों को सफलतापूर्वक अपनाया जा सके।

संकर धान का अंगीकरण:

हस्तक्षेप से पहले दोनों गांवों में 100% धान क्षेत्र परंपरागत दीर्घ अविध वाली किस्म 'क्रांति' के अधीन था। निरंतर जागरूकता, प्रशिक्षण और प्रदर्शन गतिविधियों के फलस्वरूप संकर धान का अंगीकरण उल्लेखनीय रूप से बढा। the problem of weed flora shift, provided a substantial boost to rice productivity. The continuous adoption of hybrid rice cultivation combined with advanced weed management practices delivered through FFP interventions led to a 33-34% increase in grain yield and a 62-65% increase in net returns over the last seven years of the project.

Beginning in 2018, the FFP team introduced the following key interventions:

- Hybrid rice varieties: 'Arize Gold 6444' and 'Ganga Hybrid' were introduced based on their high yield potential and suitability for upland irrigated conditions
- Weed management: Broad-spectrum, newgeneration, high potency, low dose ready-mix herbicides like cyhalofop-butyl 5.1% w/w + penoxsulam 1.02% w/w OD and triafamone 20% w/w + ethoxysulfuron 10% w/w WG, using in rotation to minimise the problem of weed flora shift, were promoted for effective and timely weed control.
- Capacity building: Hands-on- training, field demonstrations, and farmer-scientist interface meetings focused on hybrid rice cultivation, herbicides and herbicide application techniques, and good agronomic practices.
- **Critical input support:** High-quality seeds of hybrid rice and herbicides were provided as critical inputs to ensure successful adoption.

Adoption of Hybrid Rice cultivation:

Before the intervention, 100% of the rice area in both villages was under the traditional long-duration variety '*Kranti*'. Following sustained awareness, training, and demonstration activities, hybrid rice adoption increased significantly.

Table 2.1: Area under hybrid rice before and after FFP intervention.

Intervention	Area 2017-18	Area 2023-24	Area 2017-18	Area 2023-24
	Umariya	Choubey	Barau	da
Introduction of hybrid rice cultivation technology (Variety Arize Gold 6444 and Ganga hybrid) and weed management practices.	688 ha area under Kranti (100%)	685 ha area under hybrid rice (99.5%)	380 ha area under <i>Kranti</i> (100 %)	377 ha area under hybrid rice (99.2%)

Note: Umariya Choubey total cultivated area- 688 ha & Barauda total cultivated area-380 ha.

Table 2.2: Increasing trend of area under hybrid rice cultivation from 2017-18 to 2023-24

Introduction of hybrid rice cultivation technology (Variety Arize Gold 6444 and Ganga hybrid) and weed management practices.	Umariya Choubey (688 ha)		Barauda (380 ha)		
2017-18	100% area under Kranti (Long duration traditional variety)	688 ha	100% area under <i>Kranti</i> (Long duration traditional variety)	380 ha	
2018-19 (Inception of FFP)	2.9% area under hybrid rice	20 ha	5.26% area under hybrid rice	20 ha	
2019-20	65% area under hybrid rice	446 ha	52.4% area under hybrid rice	199 ha	
2020-21	78.5% area under hybrid rice	540 ha	71.2% area under hybrid rice	276 ha	
2021-22	86.8% area under hybrid rice	597 ha	89.4% area under hybrid rice	340 ha	
2022-23	98.9% area under hybrid rice	680 ha	98.6% area under hybrid rice	375 ha	
2023-24	99.5% area under hybrid rice	685 ha	99.2% area under hybrid rice	377 ha	

Figure 2.1: Increasing trend of area under hybrid rice in Umariya Choubey village

उपज एवं आर्थिक विश्लेषण:

संयुक्त फसल प्रबंधन प्रौद्योगिकियों, जिनमें उच्च उत्पादकता वाली संकर धान की खेती, अनुशंसित मात्रा में संतुलित उर्वरकों का प्रयोग तथा उन्नत खरपतवार प्रबंधन प्रथाएँ शामिल हैं, के सतत् अंगीकरण से फार्मर फर्स्ट परियोजना के अंतर्गत उत्पादन और आर्थिक लाभ में उल्लेखनीय वृद्धि दर्ज की गई। उमरिया चौबे गाँव में एफएफपी के हस्तक्षेप से किसानों के द्वारा की जा रही पारंपरिक खेती की तुलना

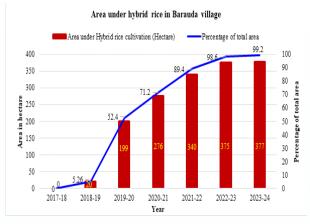


Figure 2.2: Increasing trend of area under hybrid rice in Barauda village

Yield and Economics:

The continuous adoption of integrated crop management technologies-including cultivation of high-yielding hybrid rice, application of balanced fertilizers at recommended doses, and improved weed management practices—resulted in significant yield and economic gains under the Farmer FIRST Programme. In Umariya Choubey village, the intervention led to an additional grain yield of 7.5

में 7.5 क्विंटल/हेक्टेयर (16%) से 11.09 क्विंटल/हेक्टेयर (19.3%) तक अतिरिक्त उपज प्राप्त हुई, जिससे शुद्ध लाभ में ₹10,379/हेक्टेयर (20%) से ₹31,309/हेक्टेयर (39%) तक की वृद्धि हुई (**तालिका 2.3**)।

इसी प्रकार बरौदा गाँव में किसानों के द्वारा की जा रही पारंपरिक खेती की तुलना में 5.0 क्विंटल/हेक्टेयर (11%) से 10.98 क्विंटल/हेक्टेयर (19%) तक अतिरिक्त उपज और ₹8,873/हेक्टेयर (19%) से ₹28,886/हेक्टेयर (36%) तक शुद्ध लाभ में वृद्धि दर्ज की गई (**तालिका 2.4**)। इस प्रकार, एफएफपी के अंतर्गत सात वर्षों तक संकर धान की खेती का संचयी प्रभाव स्पष्ट रूप से दर्शाता है कि एकीकृत प्रौद्योगिकी ने उत्पादन एवं लाभप्रदता दोनों में निरंतर और उल्लेखनीय सुधार सुनिश्चित किए। q/ha (16%) to 11.09 q/ha (19.3%) compared to the farmers' practice. The corresponding increase in net profit ranged from Rs. 10,379/ha (20%) to Rs. 31,309/ha (39%) (**Table 2.3**).

Similarly, in Barauda village, an additional grain yield of $5.0\,\mathrm{q/ha}$ (11%) to $10.98\,\mathrm{q/ha}$ (19%) and an increase in net returns of Rs. $8.873/\mathrm{ha}$ (19%) to Rs. $28.886/\mathrm{ha}$ (36%) were recorded over the farmers' practice (**Table 2.4**). The cumulative impact of hybrid rice cultivation over seven years under FFP, demonstrated consistent and substantial improvements in both grain yield and profitability, validating the effectiveness of the integrated technological package introduced.

Table 2.3: Yield and economics of hybrid rice cultivation in Umariya Choubey village

Year	Yiel	d (q/ha)	Net retu	rns (Rs./ha)	BC ratio	
	Farmers'	Intervention	Farmers'	Intervention	Farmers'	Intervention
	practice		practice		practice	
2017-18	47.5	55.0	51907	62286	3.39	4.12
2018-19	35.0	46.5	35167	55160	2.64	3.87
2019-20	50.5	59.3	58402	75156	2.72	3.26
2020-21	46.6	66.1	50501	89519	2.46	3.64
2021-22	43.7	63.0	39053	74998	1.85	2.59
2022-23	46.0	77.5	48115	116885	2.05	3.84
2023-24	57.6	68.7	80016	111325	2.75	3.73

Table 2.4: Yield and economics of hybrid rice cultivation in Barauda village

Year	Yield (q/ha)		Net reti	ırns (Rs./ha)	ВС	ratio
	Farmers' practice	Intervention	Farmers' practice	Intervention	Farmers' practice	Intervention
2017-18	45.0	50.0	45698	54571	2.90	3.38
2018-19	36.9	46.6	37076	55278	2.73	3.87
2019-20	51.9	62.5	60872	81032	2.79	3.43
2020-21	45.1	66.2	47417	87557	2.29	3.43
2021-22	45.9	65.0	48048	82753	2.17	2.91
2022-23	46.4	77.3	48931	116437	2.07	3.83
2023-24	57.3	68.3	79361	108247	2.74	3.65

फार्मर फर्स्ट परियोजना की शुरुआत १ फरवरी २०१७ को मध्य प्रदेश के जबलप्र जिले के पनागर ब्लॉक के बरौदा और उमरिया चौबे गाँवों में की गई। सहभागी ग्रामीण मूल्यांकन से यह तथ्य सामने आया कि खरीफ ऋतु में दोनों गाँवों की लगभग १००% कृषि योग्य भूमि पर लंबी अवधि की पारंपरिक धान की किस्म 'क्रांति' बोई जाती थी, जिससे न केवल धान की उत्पादकता सीमित रहती थी, बल्कि गेहूँ की बुवाई में भी विलंब होता था और परिणामस्वरूप गेहँ की उपज में उल्लेखनीय कमी आती थी। किसान मुख्यतः परंपरागत कृषि पद्धतियों पर निर्भर थे, जिससे उत्पादकता कम रहती थी और संसाधनों का उपयोग भी प्रभावी रूप से नहीं हो पाता था। इन च्नौतियों के निवारण हेत् एफएफपी के अंतर्गत किसानों को प्रशिक्षण दिया गया, किसान-वैज्ञानिक परिचर्चा बैठकें आयोजित की गईं तथा भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय के फार्म पर भ्रमण यात्राएँ कराई गईं, जिससे किसानों का कृषि कौशल, संकर धान की खेती और उन्नत खरपतवार प्रबंधन प्रौद्योगिकी के प्रति ज्ञान एवं समझ बढी। उच्च उत्पादकता वाली संकर धान की किस्में जैसे 'अराइज़ गोल्ड ६४४४' और 'गंगा हाइब्रिड' को व्यापक स्पेक्ट्रम, उच्च प्रभावी एवं कम मात्रा वाले रेडी-मिक्स खरपतवारनाशियों के साथ रोटेशन में अपनाने हेत् किसानों के समक्ष प्रस्तुत किया गया, जिससे फसल उत्पादन में उल्लेखनीय सुधार हुआ। इन प्रौद्योगिकियों को सतत अपनाने और एफएफपी टीम के तकनीकी सहयोग से उमरिया चौबे में संकर धान का क्षेत्र ९९.५% तथा बरौदा में 99.2% तक विस्तारित हुआ, जिसके परिणामस्वरूप किसानों की पारंपरिक खेती की तुलना में औसत उपज में 33-34% तथा शुद्ध लाभ में 62-65% की वृद्धि दर्ज की गई। यहाँ तक कि परियोजना के नए क्षेत्र पर स्थानांतरित होने के बाद भी दोनों गाँवों के किसान खरीफ ऋतु में संकर धान की खेती जारी रखे हुए हैं, जिससे कार्यक्रम का प्रभाव सतत रूप से दृष्टिगोचर हो रहा है।

3. गेंहू (2017-18 से 2023-24)

फार्मर फर्स्ट परियोजना को अपनाने से पहले, चयनित गाँवों में किसान मुख्य रूप से पारंपरिक कम प्रभावी खरपतवार प्रबंधन पद्धतियों पर निर्भर थे, जिनमें मुख्य रूप से हाथ से निराई (मैनुअल वीडिंग) शामिल थी। यह पद्धति न केवल खेती की लागत को बढ़ाती थी बल्कि गेहूँ के खेतों में विविध और तेज़ी से बढ़ने वाले खरपतवारों को प्रभावी ढंग से नियंत्रित करने में भी असफल रही। प्रारंभिक मूल्यांकन में पाया गया कि अवशेष जलाना, उच्च प्रभावशीलता वाले, कम मात्रा में उपयोग किए जाने वाले नए पीढ़ी के रेडी-मिक्स शाकनाशी के प्रति जागरुकता और अपनाने का अभाव, वैज्ञानिक तरीके से शाकनाशी छिड़काव की जानकारी का अभाव, तथा उच्च उत्पादकता वाली किस्मों के बारे में जागरुकता की कमी जैसी समस्याएँ प्रमुख थीं। परिणामस्वरूप, पारंपरिक पुरानी किस्मों के उपयोग के कारण गेहूँ की उत्पादकता केवल 41 क्विंटल/हेक्टयेर के आसपास स्थिर बनी रही।

इन चुनौतियों के समाधान के लिए, एफएफपी की टीम ने बीज प्रतिस्थापन और उन्नत खरपतवार प्रबंधन तकनीकों पर केंद्रित प्रौद्योगिकीय हस्तक्षेप का पैकेज लागू किया:

The Farmer FIRST Programme (FFP) was initiated on 1st February 2017 in the villages of Barauda and Umariya Choubey under the Panagar block of Jabalpur district, Madhya Pradesh. Participatory Rural Appraisal (PRA) revealed that nearly 100% of the cultivable land in both the villages was under the traditional long-duration rice variety 'Kranti' during the kharif season, which not only limited rice productivity but also delayed wheat sowing, leading to significant yield reduction of wheat. Farmers largely relied on conventional agricultural practices, resulting in low productivity and inefficient resource use. To address these challenges, FFP interventions included farmer trainings, interface meetings, and exposure visits to ICAR-DWR research farms, enhancing farmers' knowledge of hybrid rice cultivation and advance weed management technology. High-yielding hybrid rice varieties like 'Arize Gold 6444' and 'Ganga Hybrid' were introduced alongside broad-spectrum, high potency, low dose ready-mix herbicides in rotation resulted in significant improvement on crop performance. Continuous adoption of these technologies, with technical support from the FFP team, led to expansion of hybrid rice cultivation to 99.5% in Umariya Choubey and 99.2% in Barauda, resulting in an average yield increase of 33-34% and net profit enhancement of 62-65% over farmers' practice during the seven-year period. Even the project has been shifted to a new site; farmers in both villages are continuously growing hybrid rice and adopting advance weed management practices during the kharif season. This led to sustain the impact of the programme.

3. Wheat (2017-18 to 2023-24)

Before the adoption of the Farmer FIRST Programme (FFP), farmers in the adopted villages mainly relied on traditional low efficacy weed management practices, primarily manual hand weeding. This practice not only increased the cost of cultivation but also proved less effective in controlling the diverse and fast-growing weed flora in wheat fields. A baseline appraisal revealed a specific problem of residue burning, poor awareness and adoption of high potency, low dose, new-generation ready-mix herbicides, as well as inadequate knowledge of scientific herbicide application techniques, and lack of awareness about high yielding varieties. As a result, wheat productivity remained stagnant, averaging only 41 q/ha with the use of old traditional varieties.

To address these challenges, the FFP team introduced a package of technological interventions focused on seed replacement and improved weed management technologies:

प्रमुख प्रोद्योगिकी हस्तक्षेप:

- उन्नत गेहूँ किस्में: पुरानी, कम उत्पादक स्थानीय किस्मों के स्थान पर उच्च उत्पादकता वाली किस्म जैसे-जीडब्लू-273 और जीडब्लू-322 को किसानों के बीच प्रचलित किया गया।
- **धान की पराली प्रबंधन:** पराली जलाने की समस्या से निपटने के लिए धान की पराली में ही हैप्पी सीडर से बुवाई की तकनीक अपनाई गई।
- खरपतवार प्रबंधन: किसानों को क्लोडिनाफॉप-प्रोपार्जिल + मेटसल्फ्यूरॉन-मिथाइल जैसे व्यापक प्रभावी, उच्च प्रभावशीलता और कम मात्रा वाले रेडी-मिक्स शाकनाशी से परिचित कराया गया ताकि समय पर और प्रभावी खरपतवार नियंत्रण सनिश्चित हो सके।
- किसान क्षमता विकास: किसानों को शाकनाशी छिड़काव तकनीकों, नोजल चयन, कैलिब्रेशन तथा वैज्ञानिक खरपतवार प्रबंधन के लिए सुरक्षा उपायों पर प्रशिक्षण देने हेतु व्यावहारिक प्रशिक्षण सत्र, किसान-वैज्ञानिक परिचर्चा और खेत प्रदर्शन जैसे कार्यक्रम आयोजित किए गए।
- आवश्यक सामग्री वितरण: किसानों को प्रमाणित गेहूँ बीज (GW-273) और अनुशंसित शाकनाशी जैसी आवश्यक सामग्रियाँ उपलब्ध कराई गईं ताकि तकनीक को अपनाने और उत्पादकता बढ़ाने में सहायता मिले।

वर्ष 2017-18 से 2023-24 के बीच उमरिया चौबे और बरौदा गाँवों में एफएफपी प्रौद्योगिकीय हस्तक्षेप के कार्यान्वयन के बाद, किसानों ने तेजी से उन्नत किस्मों जैसे GW-273 और GW-322 को वैज्ञानिक खरपतवार प्रबंधन पद्धतियों के साथ अपनाया। परिणामस्वरूप गेहूँ की उत्पादकता में उल्लेखनीय वृद्धि हुई, जो औसत उपज 41 क्विंटल प्रति हेक्टेयर से काफी अधिक रही, और किसानों की आर्थिक आय में भी बढ़ोतरी हुई।

Introduction of Key interventions:

- **Improved Wheat Variety:** High yielding wheat varieties *GW*-273 and *GW*-322 was introduced to replace old, low-yielding local varieties.
- Rice residue management: Seeding with Happy Seeder within rice residue was introduced to tackle residue burning.
- Weed Management: Farmers were introduced to broad-spectrum, high potency, low-dose ready-mix herbicide clodinafop-propargyl + metsulfuronmethyl to ensure effective and timely weed control.
- Capacity Building: Hands-on training sessions, farmer-scientist interface meetings, and field demonstrations were organized to empower farmers with technical know-how on herbicide spraying techniques, nozzle selection, calibration, and safety measures for scientific weed management.
- **Critical input support:** Provision of critical inputs such as certified wheat seed (*GW*-273) and recommended herbicides was ensured to support adoption and enhance productivity.

Following the implementation of FFP interventions from 2017-18 to 2023-24 in Umariya Choubey and Barauda villages, farmers readily adopted the improved variety *GW*-273 and *GW*-322 coupled with scientific weed management practices. The results revealed a significant improvement in wheat productivity, surpassing the baseline yield of 41 q/ha, and delivering higher economic returns.

Table 3.1: Yield and economics of wheat in Barauda village

Year	Yield (q/ha)		Net returns (Rs./ha)		BC ratio			
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention		
2017-18	41.0	48.4	36200	57560	2.15	3.59		
2018-19	41.0	47.2	35435	61776	1.99	3.46		
2019-20	41.1	47.2	39924	64276	2.12	3.85		
2020-21	40.5	52.1	41328	61418	2.20	2.75		
2021-22	41.3	49.8	37470	57472	1.82	2.34		
2022-23	41.0	48.8	41322	62138	1.90	2.50		
2023-24	32.2	37.9	27538	44729	1.60	2.08		

Table 3.2: Yield and economics of wheat in Umariya Choubey village

Year	Yield (q/ha)		Net return	ıs (Rs./ha)	BC ratio	
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention
2017-18	40.3	47.7	35100	66550	2.15	3.65
2018-19	39.6	46.0	37164	59568	2.04	3.38
2019-20	39.6	48.0	37164	65748	2.04	3.91
2020-21	39.3	50.1	43638	65268	2.27	2.89
2021-22	42.3	48.7	39485	55256	1.86	2.29
2022-23	41.1	49.6	41588	63784	1.91	2.53
2023-24	31.9	38.0	26810	44969	1.59	2.1

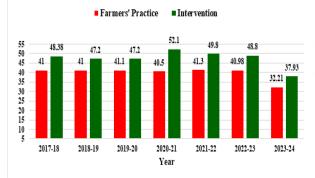


Figure 3.1: Yield of wheat (q/ha) in Barauda village

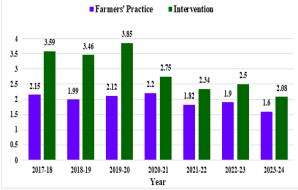


Figure 3.3: BC ratio of wheat in Barauda village

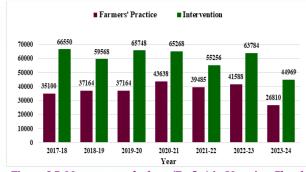


Figure 3.5: Net returns of wheat (Rs/ha) in Umariya Choubey

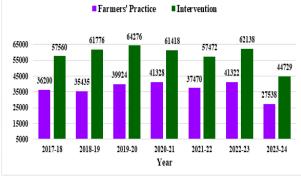


Figure 3.2: Net returns of wheat (Rs./ha) in Barauda village

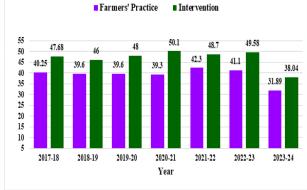


Figure 3.4: Yield of wheat (q/ha) in Umariya Choubey village

Figure 3.6: BC ratio of wheat in Umariya Choubey

फार्मर फर्स्ट परियोजना के अंतर्गत गेहूँ की परंपरागत किस्मों के स्थान पर उच्च उत्पादक किस्मों GW-273 और GW-322 को प्रोत्साहित किया गया। इसके साथ ही किसानों की तकनीकी जानकारी बढ़ाने के लिए प्रशिक्षण कार्यक्रम, संवाद बैठकें तथा प्रक्षेत्र प्रदर्शन आयोजित किए गए, जिनसे फसल एवं खरपतवार प्रबंधन का ज्ञान सुदृढ़ हुआ। नई पीढ़ी के व्यापक प्रभावी शाकनाशियों सहित स्थायी खरपतवार नियंत्रण पद्धतियों को अपनाने से गेहूँ उत्पादन में उल्लेखनीय वृद्धि हुई। चयनित दोनों गाँवों में गेहूँ की औसत उपज लगभग 19% बढ़ी तथा शुद्ध लाभ में 60% (₹22,168/है.) की वृद्धि हुई, जो इन प्रौद्योजितय हस्तक्षेप के आर्थिक लाभ को दशतिती है।

हालाँकि, वर्ष 2023-24 में प्रतिकूल मौसम के कारण दोनों गाँवों में गेहूँ उत्पादन घटा। 26 नवम्बर से 9 दिसम्बर 2023 के बीच लगभग 50 मि.मी. वर्षा ने बीज अंकुरण को नुकसान पहुँचाया और किसानों को पुनः बुवाई करने के लिए बाध्य किया, जिससे फसल स्थापना और बाद की कटाई में विलंब हुआ। इसके अतिरिक्त, 9 से 15 अप्रैल 2024 के बीच हुई 16.5 मि.मी. की असामयिक वर्षा के कारण फसल गिरने (लॉजिंग) तथा दानों के झड़ने (शेटरिंग) की समस्या आई, जिससे अतिरिक्त उपज हानि हुई। मौसमी विपरीत परिस्थितियों के बावजूद, पिछले सात वर्षों के समग्र परिणामों ने यह सिद्ध किया कि समेकित प्रबंधन पद्धतियों के माध्यम से गेहूँ की उपज और लाभप्रदता में निरंतर सुधार हुआ है।

4. कुल फसल प्रणाली उत्पादकता धान समतुल्य उपज के रूप में (टन/हेक्टेयर/वर्ष):

वर्ष 2017-18 से 2023-24 के दौरान बरौदा और उमरिया चौबे गाँवों में प्रौद्योगिकीय हस्तक्षेप के अंतर्गत फसल प्रणाली उत्पादकता, किसानों की पारंपरिक पद्धति की तुलना में लगातार अधिक रही। बरौदा में, किसानों की परंपरागत पद्धति के अंतर्गत फसल प्रणाली उत्पादकता 8.68 से 13.00 टन/हे./वर्ष के बीच रही, जबिक प्रौद्योगिकीय हस्तक्षेप के अंतर्गत यह बढ़कर 11.99 से 17.04 टन/हे./वर्ष तक पहुँच गई। इसी प्रकार, उमरिया चौबे में किसानों की परंपरागत पद्धति के अंतर्गत उत्पादकता 8.71 से 13.47 टन/हे./वर्ष के बीच रही, जबिक प्रौद्योगिकीय हस्तक्षेप के अंतर्गत यह 11.77 से 16.85 टन/हे./वर्ष तक दर्ज की गई। दोनों गाँवों में वर्ष 2021-22 और 2022-23 के दौरान प्रौद्योगिकीय हस्तक्षेप के अंतर्गत प्रणाली उत्पादकता सर्वाधिक रही, जो यह दर्शाती है कि उन्नत खेती पद्धतियों ने संपूर्ण फसल प्रणाली के प्रदर्शन पर महत्वपूर्ण प्रभाव डाला।

The Farmer FIRST Programme (FFP) facilitated the replacement of traditional wheat seeds with high-yielding varieties GW-273 and GW-322, supported by farmer trainings, interface meetings, and field demonstrations which enhanced farmers' technical know-how on crop and weed management. Adoption of sustainable weed control practices, including new-generation broad-spectrum herbicides, resulted in significant productivity gains. Across both adopted villages, wheat grain yield increased by about 19%, while net returns improved by 60% (Rs. 22,168/ha) over the baseline, highlighting the economic benefits of these interventions.

However, during 2023-24, wheat yields declined in both villages due to adverse weather conditions. Between 26 November and 9 December 2023, about 50 mm of rainfall damaged seed germination and forced the farmers for resowing, and that resulted in delaying crop establishment and subsequent harvesting. Furthermore, unseasonal rainfall of 16.5 mm from 9 to 15 April 2024 caused lodging and shattering of grains, leading to additional yield losses. Despite these weather setbacks, the overall seven-year performance demonstrated a steady improvement in crop yield and profitability through integrated management practices.

4. Total system productivity in terms of rice equivalent yield (t/ha/year):

From 2017-18 to 2023-24, system productivity in Barauda and Umariya Choubey villages remained consistently higher under intervention as compared to farmers' practice. In Barauda, system productivity under farmers' practice ranged from 8.68 to 13.00 t/ha/year, while under intervention it improved to the tune of 11.99 to 17.04 t/ha/year. Similarly, in Umariya Choubey, farmers' practice ranged from 8.71 to 13.47 t/ha/year, whereas intervention recorded 11.77 to 16.85 t/ha/year. The highest productivity levels were recorded during 2021-22 and 2022-23 under intervention in both villages, highlighting the significant impact of improved cultivation practices on overall system performance.

Table 4.1: Year-wise (2017-18 to 2023-24) Total system Productivity (t/ha/year) in terms of rice equivalent yield under Farmers' Practice and Intervention in Barauda and Umariva Choubev Villages.

	Taimers Tractice and intervention in baradea and Omariya Choubey Vinages.									
Year	Bara	auda	Umariya	Choubey						
	Farmers' Practice	Intervention	Farmers' Practice	Intervention						
	(t/ha/year)	(t/ha/year)	(t/ha/year)	(t/ha/year)						
2017-18	12.84	14.98	13.47	15.62						
2018-19	10.46	13.08	10.16	13.02						
2019-20	12.69	15.07	12.25	14.64						
2020-21	8.68	11.99	8.71	11.77						
2021-22	13.00	17.04	13.03	16.84						
2022-23	11.69	16.76	11.70	16.85						
2023-24	11.78	14.66	11.79	14.72						

5. फसल प्रणाली का आर्थिक विश्लेषण (धान-गेहूँ-मूंग/उड़द):

वर्ष २०१७-१८ से २०२३-२४ के दौरान बरौदा और उमरिया चौबे दोनों गाँवों में प्रौद्योगिकीय हस्तक्षेप के अंतर्गत फसल प्रणाली की अर्थव्यवस्था, किसानों की पारंपरिक पद्धति की तुलना में स्पष्ट रूप से बेहतर रही। बरौदा में किसानों की परंपरागत पद्धति के अंतर्गत कुल फसल प्रणाली उपज ८.६८ से १३.०० टन/हे. के बीच रही, जबकि प्रौद्योगिकीय हस्तक्षेप से यह ११.९९ से १७.०४ टन/हे. तक बढ़ी। इसी के अनुरुप, शुद्ध मौद्रिक लाभ (NMR) किसानों की परंपरागत पद्धति में ₹१.०७७.०८१/हे. से बढकर प्रौद्योगिकीय हस्तक्षेप में ₹१.८०.४००/हे. हो गया तथा लाभ-लागत अनुपात (B:C) २.०३ से बढ़कर २.९९ तक पहुँचा। उमरिया चौबे में किसानों की परंपरागत पद्धति के अंतर्गत कुल प्रणाली उपज ८.७१ से १३.४७ टन/हे. के बीच रही, जबकि प्रौद्योगिकीय हस्तक्षेप से यह ११.७७ से १६.८५ टन/हे. तक पहुँची। यहाँ शुद्ध मौद्रिक लाभ (NMR) ₹१,०५,८९३/हे. से बढ़कर ₹१,८०,२५४/हे. हो गया तथा लाभ-लागत अनुपात (B:C) 2.09 से बढ़कर 2.96 दर्ज किया गया। दोनों गाँवों में प्रौद्योगिकीय हस्तक्षेप के अंतर्गत वर्ष २०१९-२० और २०२२-२३ के दौरान सर्वाधिक शुद्ध लाभ एवं लाभ-लागत अनुपात दर्ज किए गए, जो किसानों की परंपरागत पद्धति की तुलना में प्रौद्योगिकीय हस्तक्षेप के स्पष्ट आर्थिक लाभ और लाभप्रदता को प्रमाणित करते हैं।

5. Economics of cropping system (Rice-wheat-greengram/blackgram):

From 2017-18 to 2023-24, the economics of the cropping system in both Barauda and Umariya Choubey villages showed clear improvement under intervention compared to farmers' practice. In Barauda, total system yield under farmers' practice ranged from 8.68 to 13.00 t/ha, while intervention practices enhanced system yield ranging from 11.99 to 17.04 t/ha. Correspondingly, net monetary returns (NMR) improved from Rs. 107,081/ha under farmers' practice to Rs. 180,400/ha under intervention, with the B:C rising from 2.03 to 2.99. In Umariya Choubey, total system yield under farmers' practice were 8.71-13.47 t/ha, while intervention raised the system yield to 11.77-16.85 t/ha. NMR increased from Rs. 105,893/ha under farmers' practice to Rs. 180,254/ha under intervention, and the B:C improved from 2.09 to 2.96. Across both villages, the highest net returns and BC ratios were recorded during 2019-20 and 2022-23 under intervention, confirming its clear economic advantage and profitability over farmers' practice.

Table 5.1: Total system productivity and system economics of Barauda village

Year		Total system rice equivalent yield (t/ha)		Total system net returns (Rs./ha)		BC ratio	
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention	
2017-18	12.84	14.98	102241	159296	2.06	3.19	
2018-19	10.46	13.08	80996	137408	1.79	2.50	
2019-20	12.69	15.07	128386	195050	2.26	3.48	
2020-21	8.68	11.99	89983	151431	2.25	3.09	
2021-22	13.00	17.04	130702	207171	2.08	2.68	
2022-23	11.69	16.76	113646	223392	1.91	2.88	
2023-24	11.78	14.66	133165	204862	2.07	2.78	

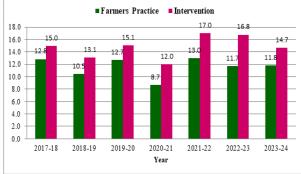


Table 5.1: Total system productivity of Barauda village

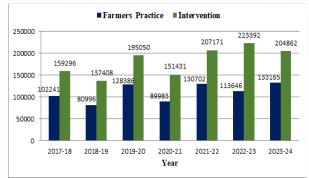


Figure 5.2: Total net returns (Rs./ha) of cropping system in Barauda village

Table 5.2: Total system productivity and system economics of Umariya Choubey village

Year	Total system rice equivalent yield (t/ha)		Total system net returns (Rs./ha)		BC ratio	
	Farmers' Practice	Intervention	Farmers' Practice	Intervention	Farmers' Practice	Intervention
2017-18	13.47	15.62	121735	171870	2.40	3.45
2018-19	10.16	13.02	78210	135571	1.78	2.47
2019-20	12.25	14.64	120462	187232	2.18	3.39
2020-21	8.71	11.77	93989	152625	2.37	3.27
2021-22	13.03	16.84	126362	199382	2.00	2.57
2022-23	11.70	16.85	113873	224937	1.91	2.89
2023-24	11.79	14.72	133575	207040	2.08	2.81

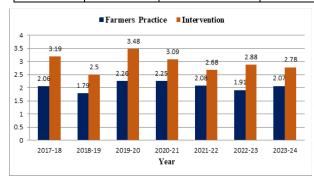


Figure 5.3: BC ratio of cropping system in Barauda village

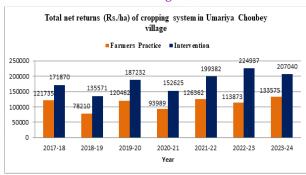


Figure 5.5: Total net returns (Rs./ha) of cropping system in Umariya Choubey village

निष्कर्षः

1. प्रौद्योगिकी हस्तक्षेप:

- धान, गेहूँ और दलहनी फसलों की उच्च उत्पादक किस्मों को प्रचलित किया गया:
- धान 'अराइज़ गोल्ड ६४४४' और 'गंगा हाइब्रिड'
- गेहूँ जीडब्लू-२७३ और जीडब्लू-३२२
- दलहनी फसलें (मूँग/उड़द) -मूँग-सम्राट, विराट, उड़द-पीयू-३१, पीयू-१
- ॥. धान, गेहूँ तथा मूँग/उड़द में प्रभावी खरपतवार प्रबंधन हेतु फसलीप्रणाली के तहत रोटेशन में व्यापक प्रभाव वाले, कम मात्रा में

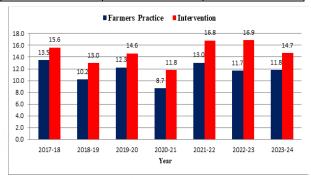


Figure 5.4 : Total system productivity of Umariya choubey village

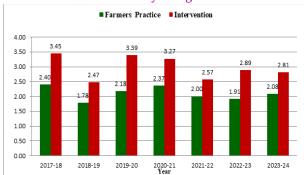


Figure 5.6: BC ratio of cropping system in Umariya Choubey village

Conclusion:

1. Intervention:

- I. High-yielding varieties of rice, wheat, and pulses were introduced:
- Rice 'Arize Gold 6444' and 'Ganga Hybrid'.
- Wheat GW-273 and GW-322.
- Pulses (Greengram/Blackgram) *Samrat, Virat, PU-31, PU-1*.
- II. Broad-spectrum, low-dose, high potency, new generation herbicides were introduced and

- उपयोग होने वाले, उच्च क्षमता वाले, नई पीढ़ी के शाकनाशी का प्रचार किया गया।
- शा. किसानों को तकनीकी जानकारी पर आधारित व्यावहारिक प्रशिक्षण दिए गए, किसान-वैज्ञानिक संवाद परिचचियें आयोजित की गई तथा भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय, जबलपुर का भ्रमण कराकर अनुभव साझा किया गया।
- IV. प्रमाणित बीज, शाकनाशी एवं सौरऊर्जा चलित स्प्रेयर जैसे महत्वपूर्णआवश्यक सामग्री समय पर उपलब्ध कराई गई।
- े किसानों की तकनीकी जानकारी तथा प्रबंधन क्षमता में उल्लेखनीय सुधार हुआ, जिससे दोनों गाँवों में वैज्ञानिक फसल एवं खरपतवार प्रबंधन विधियों को अपनाने में सफलता मिली।

२.फसल-प्रणाली उत्पादकता में सुधार:

- उमिरया चौबे गाँव में धान की उपज 16-19.3% तथा बरौदा गाँव में 11-19% तक बढ़ी, जो किसानों की पारंपिरक पद्धित की तुलना में बेहतर रही।
- ॥. गेहूँ की उपज दोनों गाँवों में लगभग १९% तक सुधरी।
- ॥।. ग्रीष्मकालीन दलहनी फसलों (मूँग/उड़द) की उपज उमरिया चौबे में 14-42% तथा बरौदा में 21-42% तक बढ़ी, जो किसानों की पारंपरिक पद्धति की तुलना में अधिक रही।
- IV.फसल प्रणाली की उत्पादकता (धान समतुल्य उपज) बरौदा में किसानों की परंपरागत पद्धति से ८.६८-१३.०० टन/हेक्टेयर से बढ़कर हस्तक्षेप के तहत ११.९९-१७.०४ टन/हेक्टेयर हुई, जबिक उमरिया चौबे में यह ८.७१-१३.४७ टन/हेक्टेयर से बढ़कर ११.७७-१६.८५ टन/हेक्टेयर हुई।
- ए. पिछले सात वर्षों में पिरयोजना के अंतर्गत ग्रीष्मकालीन परती भूमि उमिरया चौबे में 98% तथा बरौदा में 97% तक पुनर्जीवित हुई।

3. फसल-प्रणाली की अर्थव्यवस्था / लाभप्रदता में सुधार:

- फसल प्रणाली से प्राप्त शुद्ध आय दोनों गाँवों में उल्लेखनीय रूप से बढी:
- बरौदा में शुद्ध आय रा,07,081/हेक्टेयर (किसानों की पारंपरिक पद्धति) से बढ़कर रा,80,400/हेक्टेयर (प्रोधोगिकी हस्तक्षेप के तहत) हुई और लाभ-लागत अनुपात 2.03 से बढ़कर 2.99 हो गया।
- उमिरया चौबे में शुद्ध आय ₹1,05,893/हेक्टेयर (किसानों की पारंपिरक पद्धति) से ₹1,80,254/हेक्टेयर (प्रोधोगिकी हस्तक्षेप के तहत) हुई और लाभ-लागत अनुपात 2.09 से बढ़कर 2.96 हो गया।
- ॥. धान की लाभप्रदता किसानों की पारंपरिक पद्धति की तुलना में बरौदा में ₹८,८७३ से ₹२८,८८६/हेक्टेयर तक तथा उमरिया चौबे में ₹१०,३७९ से ₹३1,३०९/हेक्टेयर तक बढ़ी।
- ॥..गेहूँ की लाभप्रदता दोनों गाँवों में लगभग ₹22,168/हेक्टेयर (लगभग 60%) तक बढ़ी।
- IV.ग्रीष्मकालीन दलहनी फसलों की लाभप्रदता बरौदा में ₹2,897 से ₹26,736/हेक्टेयर तक तथा उमरिया चौबे में ₹4,348 से ₹26,651/हेक्टेयर तक बढ़ी, जो किसानों की पारंपरिक पद्धति की त्लना में अधिक रही।

- promoted in rotation for effective weed management in rice, wheat and greengram/blackgramundercroppingsystem.
- III. Practical trainings of the farmers on technical know-how of the technologies, farmer-scientist interface meetings and exposure visits to ICAR-DWR, Jabalpur were conducted time to time.
- IV. Critical inputs like certified seeds, herbicides and solar sprayer were provided in a timely manner.
- V. Manegerial skills of the farmers on technical knowhow of the technologies were improved significantly and that resulted in adoption of scientific crop and weed management practices in both villages.

2. Improvement on cropping-system productivity

- I. Rice yields increased by 16-19.3% in Umariya Choubey and 11-19% in Barauda village compared to farmers' practice.
- II. Wheat yields improved by about 19% in both villages.
- III. Summer pulses' yields increased by 14-42% in Umariya Choubey and 21-42% in Barauda village over farmers' practice.
- IV. Cropping system productivity in terms of rice equivalent yield improved from 8.68-13.00 t/ha (Farmers' practice) to 11.99-17.04 t/ha (Under intervention) in Barauda, and from 8.71-13.47 t/ha (Farmers' practice) to 11.77-16.85 t/ha (Under intervention) in Umariya Choubey village.
- V. Summer fallow lands were revived up to 98% in Umariya Choubey and 97% in Barauda village during the last seven years under the project.
- 3. Improvement on cropping-system economics/ profitability:
- I. Net returns of cropping system improved significantly in both villages:
- In Barauda, net returns increased from Rs. 1,07,081/ha (Farmers' practice) to Rs. 1,80,400/ha (Under intervention), and benefit-cost ratio improved from 2.03 to 2.99.
- In Umariya Choubey, net returns increased from Rs. 1,05,893/ha (Farmers' practice) to Rs. 1,80,254/ha (Under intervention), and benefit-cost ratio improved from 2.09 to 2.96.
- II. Rice profitability through intervention increased with the range by Rs. 8,873 Rs. 28,886/ha in Barauda and Rs. 10,379 Rs. 31,309/ha in Umariya Choubey village over the farmers' practice.
- III. Wheat profitability improved by about Rs. 22,168/ha ($\approx60\%$) in both villages.
- IV. Summer pulses' profitability improved through intervention with the range by Rs. 2,897 Rs. 26,736/ha in Barauda and Rs. 4,348 Rs. 26,651/ha in Umariya Choubey village over farmers' practice.

V. किसानों की जरुरतों को ध्यान में रखकर किए गए प्रोधोगिकी हस्तक्षेपों के परिणामस्वरुप अधिक आय, बेहतर लागत दक्षता, गेहूँ कटाई के बाद परती भूमि का प्रभावी उपयोग, संकर धान की व्यापक स्वीकृति अंततः किसानों की आजीविका में समग्र सुधार हुआ।

आभार

हम भारत सरकार के कृषि एवं किसान कल्याण मंत्रालय तथा भारतीय कृषि अनुसंधान परिषद (आईसीएआर), नई दिल्ली के प्रति हार्दिक आभार व्यक्त करते हैं जिन्होंने फार्मर फर्स्ट परियोजना के अंतर्गत गतिविधियों के क्रियान्वयन हेतु वित्तीय सहयोग प्रदान किया। हम भारतीय कृषि अनुसंधान परिषद कृषि प्रौद्योजिकी अनुप्रयोग अनुसंधान संस्थान (अटारी), जोन-IX, जबलपुर का भी आभार व्यक्त करते हैं, जिन्होंने परियोजना अवधि में निरंतर वित्तीय संसाधनों का संचार एवं आवश्यक तार्किक सहयोग उपलब्ध कराया। अंत में, हम भा.कृ.अनु.प.-खरपतवार अनुसंधान निदेशालय, जबलपुर के प्रति अपनी गहन कृतज्ञता प्रकट करते हैं, जिन्होंने आवश्यक संसाधन, तकनीकी मार्गदर्शन एवं संस्थागत सहयोग प्रदान किया, जिससे परियोजना की गतिविधियों का सफल क्रियान्वयन संभव हो सका।

V. The interventions executed through farmers' centric activities led to higher returns, better input cost efficiency, effective utilization of fallow areas after wheat harvest, wide adoption of hybrid rice cultivation, and finally improved overall livelihood of the farmers.

Acknowledgement

We would like to express our heartfelt gratitude to the Ministry of Agriculture & Farmers Welfare, Government of India, and the Indian Council of Agricultural Research (ICAR), New Delhi, for providing funds for executing the activities under the Farmer FIRST Programme. We are also thankful to ICAR-Agricultural Technology Application Research Institute (ATARI), Zone IX, Jabalpur, for mobilization of funds and providing logistic support throughout this project. Finally, we extend our sincere thanks to the ICAR-Directorate of Weed Research (DWR), Jabalpur, for providing the resources and technical support needed for successful implementation of FFP activities.

Training Programme conducted on "Weed Management in Field Crops" among the adopted farmers and distribution of seeds of hybrid rice (*Arize Gold 6444* and *Ganga Hybrid*) to the farmers

Training on spray technologies of herbicides and insecticides

Demonstration of drone application techniques

Farmer-Scientist interface meeting and distribution of critical inputs

Demonstration of summer greengram cultivation

Site committee meeting

Demonstration of hybrid rice cultivation (Var. Arize Gold 6444 and Ganga hybrid)

Demonstration of zero tillage wheat (Var. *GW-273* and *GW-322*) within rice residue

Field day programme of zero tillage wheat within rice residue

Institute Advisory Committee meeting

Sh. Bharat Patel, a small farmer under FFP conferred with "Innovative Farmer Award 2020" by ICAR-NAARM, Hyderabad

भाकृअनुप-खरपतवार अनुसंधान निदेशालय ICAR-Directorate of Weed Research जबलपुर - 482004 (म.प्र.) Jabalpur -482004 (M.P.)

फोब / Phones: +91-761-2353001, 23535101, 23535138, 2353934, फैक्स / Fax: +91-761-2353129 ई-मेल / Email: director.dwr@icar.org.in वेबसाइट / Website: http://dwr.org.in

फंसबुक लिंक / Facebook Link- https://www.facebook.com/ICAR-Directorate-of-Weed-Research-101266561775694

एक्स लिंक / X Link- https://twitter.com/Dwrlcar

यूट्यूब लिंक / Youtube Link - https://www.youtube.com/channel/UC9WOjNoMOttJalWdLfumMnA